CeNeuro2016 Nagoya BNC Joint Meeting

C. elegans Topic Meeting: NEURONAL DEVELOPMENT, SYNAPTIC FUNCTION & BEHAVIOR

July 27-30, 2016

Toyoda Auditorium, Nagoya University, Nagoya, Japan

CeNeuro2016 & Nagoya BNC Joint Meeting Program & Abstracts

July 27 (Wed) - July 30 (Sat), 2016 Toyoda Auditorium, Nagoya University

Organizers:

Ikue Mori (Nagoya University) Christine Li (City College of New York) Kotaro Kimura (Osaka University)

Local Organizers:

Tsunehiko Kohashi (Nagoya University) Yuki Tsukada (Nagoya University) Shunji Nakano (Nagoya University)

Program Committee:

Yuichi Iino (chair)(University of Tokyo) Kavita Babu (Indian Institute of Science Education & Research) Chieh Chang (University of Illinois at Chicago) Alexander Gottschalk (Goethe University Frankfurt) Anne Hart (Brown University) Yishi Jin (University of California, San Diego) Douglas Portman (University of Rochester) Niels Ringstad (New York University) Kang Shen (Stanford University) Derek Sieburth (University of Southern California) Mei Zhen (Mount Sinai Hospital)

For Nagoya BNC Symposium:

Azusa Kamikouchi (Nagoya University) Tsunehiko Kohashi (Nagoya University) Hiroko Bannai (Nagoya University)

NOTE

All contents of abstracts in the CeNeuro2016 and Nagoya BNC International Symposium meeting book or any oral and poster presentations presented at the CeNeuro2016 meeting and Nagoya BNC International Symposium should be regarded strictly as unpublished results. These unpublished results are prohibited under any circumstances from being used and/or cited in any abstract or publication without authors' consent.

Slides used in any oral presentation as well as contents of any poster presentation are prohibited from being photographed under any circumstances by other participants; furthermore, oral presentations are prohibited from being recorded under any circumstances by other participants.

For the sake of holding meetings like CeNeuro2016 to stimulate discussions and collaborations based on unpublished results, we organizers shall execute a right to prohibit anyone who violates any of these rules from attending the meeting or from entering to the venue.

Table of Contents

Nagoya University Campus Map 1
Information for Participants 2
Information for Chairs and Presenters5
Program 7
Poster List 14
Abstracts
Keynote22
Cell Biology and Cell Structure Workshop28
Whole Brain Imaging Workshop as a joint session of CeNeuro and Nagoya BNC
Nagoya BNC Symposium
Oral Presentations36
Poster Presentations88
Lunch Sponsor Session 190
Author Index 191
Acknowledgements 196

Nagoya University Campus Map

Information for Participants

Registration (at Toyoda Auditorium)

Please show up at the Registration Desk on the first day of your attendance and pick up your meeting material at Toyoda Auditorium

(Open Hours of Registration Desk)

July 27	12:00-17:00	
July 28, 29	8:30-17:00	
July 30	8:30-12:00	*Registration Desk is also available for general inquiries about the meeting.

Opening Ceremony (July. 27, 17:45-18:00 at Toyoda Auditorium)

Enjoy Koto & Shakuhachi performance by Korei Hogakukai!

Opening Mixer (July. 27, 18:00-19:00 at Toyoda Auditorium)

Welcome to the Conference ! This will be an ideal opportunity to catch up with your international colleagues in a casual atmosphere.

Banquet (July 29, 19:30-20:30 at Nagoya Univ. Co-op South Mei-dining) *see page 1 for map

Enjoy local foods in Nagoya called Nagoya Meshi, such as Misokatsu (pork cutlet with miso sauce), Hitsumabushi (chopped kabayaki eel on rice), Kishimen (flat noodle), Tenmusu (Rice Balls with Tempura inside), etc.

Nagoya BNC Symposium Opening Concert (July. 30, 13:15-13:45 at Toyoda Auditorium)

Ariko Matsuzaki (Vc) Hitomi Narukawa (Pf)

Lunch & Dinner

Lunches (for July 28, 29 & 30) and Dinner (for July 28) will be served at Toyoda Auditorium.

Note: Lunch of the final day will be a take-out lunch.

Drink Service

Coffee and Tea will be available at coffee breaks.

Internet Access & Electricity

Wi-Fi is available at the meeting site. ID and Password for Wi-Fi are enclosed in a congress bag.

Convenience store (FamilyMart)

*see page 1 for map

There are 2 convenience stores on the campus of Nagoya Univ. for the purchase of beverages, snacks, bread, rice balls, etc. ;copying / faxing are also available. Open hours are 7:00am to 23:00pm. (Not open 24 hours a day)

PROGRAM

July 27 (Wed), 2016

14:00-17	::30 Ple	enary 1 Plasticity and modulation of sensory neural circuits
		Chairs: Queelim Ch'ng, Kang Shen
14:00	Keynote	Circuit mechanisms underlying olfactory learning Yun Zhang
14:30	O-01	Gonadal maturation changes chemotaxis behavior and neural processing in the olfactory circuit of <i>C. elegans</i> Manabi Fujiwara
14:45	O-02	Sexual modulation of sensory function guides behavioral choice in <i>C. elegans</i> adults Kelli A. Fagan
15:00	O-03	The novel components regulating forgetting of the olfactory adaptation at the downstream of the TIR-1/JNK-1 pathway Tomohiro Kitazono
15:15	O-04	The Role of the CREB-1 homolog, CRH-1, in associative learning in <i>Caenorhabditis</i> elegans Yogesh Dahiya
15:30-16:00		Coffee Break
16:00	O-05	A neural circuit for experience-dependent salt chemotaxis in <i>C. elegans</i> Hirofumi Sato
16:15	O-06	Diacylglycerol encodes differences between past and current stimulus intensity Hayao Ohno
16:30	0-07	Genetic switch between redundancy and synergy in a multicellular gene expression code QueeLim Ch'ng
16:45	O-08	A Neuron Circuit of <i>Caenorhabditis elegans</i> Generates Memory-Dependent Behaviors in Na ⁺ Chemotaxis Lifang Wang
17:00	O-09	AFD-specific receptor guanylyl cyclases confer thermosensory responses Asuka Takeishi
17:15	O-10	Epilepsy-related mutations in SLO-2 BK potassium channel slow down a behavior change in <i>C. elegans</i> Ichiro Aoki

17:30-19:00	Opening Mixer	

17:45-18:00 **Opening Ceremony** "Koto & Shakuhachi performance by Korei Hogakukai"

19:00-20:30 **Poster Session 1**

July 28 (Thu), 2016					
9:00-12:3	o Ple	nary 2 Connections, maps and new tools Chairs: Hang Lu, Alexander Gottschalk			
9:00	Keynote	Map making in <i>C. elegans</i> : Charting the nervous system Oliver Hobert			
9:30	0-11	WormGUIDES: Making Neural Development Visible and Accessible Anthony Santella			
9:45	0-12	The multilayer connectome of <i>C. elegans</i> William R Schafer			
10:00	0-13	Mapping C. elegans neuropeptide-receptor interactions by unbiased reverse pharmacology Isabel Beets			
10:15	O-14	Light induced transport to study neuronal polarity Martin Harterink			
10:30-11:00		Coffee Break			
11:00	0-15	<i>In actio</i> optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode <i>C. elegans</i> Yuki Tanimoto			
11:15	O-16	Reverse-Correlation Analysis of Mechanosensory Circuit Dynamics Using Optogenetics and Behavior Analysis Daniel A Porto			
11:30	0-17	Microfluidics for neuronal functional imaging of multi-modal stimulation Yongmin Cho			
11:45	O-18	Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans Jeffrey P Nguyen			
12:00	O-19	3D Tracking of Neurons for Global Brain Imaging in Awake <i>C. elegans</i> with Point Registration Charles L Zhao			

093C	cGAL, a Temperature-Robust GAL4-UAS System for Controlling Gene Expression in <i>C. elegans</i> Han Wang
094A	Behavioral phenotyping of neuropeptidergic mutants in experience-dependent salt chemotaxis Jan Watteyne
095B	BKIP-2, a G protein-coupled receptor, is required for the function of BK channel in vivo Zhao-Wen Wang
096C	Identification of RIA interneuron-mediated behavioral components essential for thermotaxis Linghuan Xu
097A	Dissecting the motor circuit that drives forward locomotion in <i>Caenorhabditis elegans</i> Tianqi Xu
098B	Towards identifying neuropeptide signaling that regulates repulsive odor learning Ayaka Yamaguchi
099C	A metabotropic glutamate receptor MGL-2 regulates repulsive olfactory learning. Shuhei Yamazaki
100A	<i>trp-1</i> and <i>trp-2</i> TRPC channels modulate locomotive behavior of <i>C. elegans</i> Jihye Yeon
101 B	The Developmental Decision of L2/L2d Affected by Sensing Environmental Uncertainty Hyunsoo Yim
102C	Appetite Control: To eat or Not to eat, that is the question Young-Jai You
103A	A neuropeptide mediated integration of habituation and sensitization to repeated optogenetic stimulation promotes escape Alex Yu
104B	The molecular mechanisms underlying synapse growth by extracellular matrix proteins in <i>C. elegans</i> Yurong Zhou

Keynote Workshop Nagoya BNC Symposium Abstract

Keynote-1

Circuit mechanisms underlying olfactory learning

Yun Zhang

Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA

Olfaction is a fundamental sense that guides behavior in many animals. Experience profoundly shapes the representation of an odor to an animal. However, how learning modulates olfaction-guided behavior is not fully understood, partly due to our limited understanding of the underlying neural circuits. Using a form of olfactory learning in Caenorhabditis elegans that is analogous to the Garcia effect, we systematically pursue the circuit mechanisms of learning. We have functionally mapped a neuronal network, from sensory neurons to motor neurons, that encodes both the naive and learned olfactory behaviors, revealing organizational principles for neural circuits of learning. We have characterized physiological property of each tier of the circuits and correlated the neuronal attributes with behavior. Particularly, we have found that the key interneuron of the learning circuit encodes motor outputs with compartmentalized axonal activity and sensory inputs with synchronized activity. We now show that these two activity patterns interact to integrate sensory and motor information, directing odor-guided chemotactic movements. Learning modulates the sensorimotor integration to generate experience-dependent changes in behavioral response. Meanwhile, our studies have also revealed a critical role of neuromodulators in shaping the state of the learning circuit. We are currently addressing how neuromodulators coordinate the activity of the learning circuit with whole animal physiology to regulate learning in a context-dependent manner. Together, our findings provide mechanistic insights into the neural circuits of learning at all levels from sensory perception to motor execution.

Oral Presentation Abstract

O-01 Gonadal maturation changes chemotaxis behavior and neural processing in the olfactory circuit of *C. elegans*

<u>Manabi Fujiwara</u>, Itaru Aoyama, Takahiro Hino, Takayuki Teramoto, Takeshi Ishihara

Department of Biology, Faculty of Science, Kyushu University, Japan

keyword: chemotaxis, larva, germline, daf-16

Many animal species change their behavior depending on their stage of development. However, the mechanisms involved in translating their developmental stage into the modifications of the neuronal circuits that underlie these behavioral changes remain unknown. Here, we show that *Caenorhabditis elegans* changes its olfactory preferences during development. Larvae exhibit a weak chemotactic response to the food-associated odor diacetyl, while adults exhibit a strong response. We show that germline loss, caused either by laser ablation of germline precursor cells or by mutations, results in a diacetyl-specific chemotactic defect in adult animals. These results suggest that germline cells, which proliferate dramatically during the larval stages, enhance chemotaxis to diacetyl. Removal experiment of specific neurons suggested that AWA olfactory neurons and their downstream interneurons, AIA and AIB, are required for germline-dependent chemotactic enhancement. Calcium imaging in animals lacking germline cells indicates that the neural responses of AWA and AIB to diacetyl stimuli are decreased compared with animals with an intact germline. These changes in neural activities may at least partly explain the behavioral change of animals lacking germline cells. Furthermore, this chemotactic change depends on the transcription factor DAF-16/FOXO. We find that organismal behavior changes through development by integrating information about physiological status from internal tissues to modify a simple sensory circuit.

Poster Presentation Abstract

001A Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in *C. elegans*

<u>Tanimul Alam</u>¹⁾, Hiroki Maruyama¹⁾, Chun Li¹⁾, Strahil Pastuhov¹⁾, Paola Nix²⁾, Michael Bastiani²⁾, Naoki Hisamoto¹⁾, Kunihiro Matsumoto¹⁾

1) Division of Biological Science Graduate School of Science Nagoya University

2) Department of Biology, University of Utah

keyword: hif-1, serotonin, rho-1, axon, regeneration

The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12*a* and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.

104B The molecular mechanisms underlying synapse growth by extracellular matrix proteins in *C. elegans*

<u>Yurong Zhou¹⁾²⁾</u>, Jianzhen Qin¹⁾²⁾, Congcong Cao¹⁾²⁾, Mei Ding¹⁾

- 1) Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- 2) University of the Chinese Academy of Sciences, Beijing, China

keyword: synapse, extracellular matrix proteins, type IV collagen, type XVIII collagen

In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. We previously identified that in the *C. elegans* neuromuscular junction (NMJ), collagens type IV and XVIII are critical for growth restriction of presynaptic boutons. Without these components, ectopic boutons progressively invade into non-synaptic region. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. To further understand the signaling mechanisms underlying synapse restriction, we performed a suppressor screen and identified six mutants which significantly suppress the collagen type IV and XVIII double mutant phenotype. Hence, we may reveal the molecular apparatus responsible for synapse growth regulation.

Acknowledgements

CeNeuro2016 & Nagoya BNC Joint Meeting expresses its sincere gratitude for generous financial supports of the following:

GRANTS

DAIKO FOUNDATION KANSAI · OSAKA 21st Century Association The Japan World Exposition 1970 Commemorative Fund Nagoya University Program for Leading Graduate Schools "Integrative Graduate Education and Research in Green Natural Sciences", MEXT, Japan The Company of Biologists Ltd The Kato Memorial Bioscience Foundation The Naito Foundation The NOVARTIS Foundation (Japan) The Uehara Memorial Foundation

Lunch Sponsors

Leica Microsystems K.K.

Exhibitions

ASKA COMPANY Carl Zeiss Microscopy Co ., Ltd. HAWK VISION Inc. MBF Bioscience

Advertising

Bio-Rad Laboratories, Inc. Kinoshita Rika Co., Ltd. Nikon Instech Co., Ltd. OLYMPUS CORPORATION RIKAKEN CO., LTD. SIGMAKOKI Co., LTD

CeNeuro2016 Program at a glance

	July 27 Wednesday	July 28 Thursday	July 29 Friday	July 30 Saturday
8:00				
9:00		9:00~12:30	9:00~12:30	9:00~10:45
10:00		Dianamy 2	Dianami 4	Dynamics of the nervous system
		Connections, maps and new tools	Behavioral repertoire	keynote: Cori Bargmann
11:00		keynote: Oliver Hobert	keynote: Jon-Pierce Shimomura	11:00~12:30 Whole brain imaging workshop
12:00				as a joint session of CeNeuro and Nagoya BNC
13:00			12:30~13:15 Leica Microsystems K.K. Lunch Sponsor Session	Lunch
		Lunch	Lunch	13:15~13:45 Opening Concert
14:00	14:00~17:30	14:00~16:30 Plenary 3	14:00~17:30	14:00~17:00
15:00	Plenary 1	Development and function of synapses	Plenary 5	Nagoya BNC
16:00	Plasticity and modulation of sensory neural circuits	keynote:	Maintenance and pathogenesis	Martin Chalfie, Eve Marder,
	keynote: Yun Zhang	16:30~17:30	keynote: Monica Driscoll	Johannes Seelig
17:00		Cell Biology and Cell Structure	17.00 10.00	- <u> </u>
18:00	Opening Ceremony	Dinner	Poster Session	
19:00	Opening Mixer			
	19:00~20:30	$19:00 \sim 20:30$		
20:00			Banquet Nagoya University	
21:00			Co-op South Mei-dining	